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• Adjoint-based estimates of obs impact are now an accepted 
alternative / complement to traditional data denial experiments 
(OSEs) for assessing the impact of observations in NWP   

✓ Used currently by several  centers for experimentation 
or routine monitoring of the global observing system 
✓ Intercomparison project between centers in progress 

• For linear analysis problems, observation impact is closely 
related to (is an extension of) observation sensitivity…discussed 
at previous Adjoint Workshops 

•  This talk touches on: 

✓ Need for, implications of >1st order estimates of impact 
✓ Extension to nonlinear analysis problems 
✓ Comparison, complementarity with OSEs  

Background / Outline for this Talk  

✓ Initial intercomparison of results for two centers 



…the difference                        is the innovation vector 
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x f =m(x0 )• Consider a forecast model: 
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xa = xb +K[y−h(x)]and atmospheric analysis: 

where      is a short forecast,    are observations,    is a 
(possibly nonlinear) observation operator and     determines 
the weight, or gain, given to each observation 

€ 

xb

€ 

K

€ 

y

€ 

h

• Assume, for now, that     is either linear or only a function 
of      , and define the analysis increment: 
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δx0 = xa − xb =Kδy (1) 

Note that (1) may be viewed as a transformation between 
a perturbation         in state space a perturbation       in 
observation space 
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The Data Assimilation System  



Observation Sensitivity: Data Assimilation System Adjoint 
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Baker and Daley (2000) showed that the sensitivity of the analysis 
to observations could be computed using the adjoint of the DAS 

• The sensitivity of a measure    with respect to the initial con-
ditions (analysis) is then extended into observation space as 
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• If    is based on a model forecast, then the sensitivity of    with 
respect to the observations is 
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Langland and Baker (2004) showed that the adjoint of a data 
assimilation system could be used effectively to measure the 
impact of observations on forecast skill  

Estimating the Impact of Observations on Forecasts  

•  The difference          measures the combined impact of all 
obs assimilated at  t = 0… 
        …it can be estimated as a sum of contributions from individual 
obs using information from the model and analysis adjoints  
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•  Consider forecasts from an 
analysis     and background 
state     , and energy-based 
measure of forecast error  
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LB04 Observation Impact Estimate 
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δe < 0
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δe > 0
…the observation improves the forecast 
…the observation degrades the forecast 

• The vector               is computed only once and involves the 
entire set of observations 
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• Application is subject to assumptions and simplifications in 
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• The impact of arbitrary subsets of observations can be quantified 
by summing only terms involving the desired elements of      
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δe ≈ (δy)TKT[Mb
TC(xb

f − xt )+Ma
TC(xa

f − xt )]

…removing or changing the properties of one observation 
changes the scalar measure of all other observations  

model adjoint analysis adjoint 



FCST ERROR REDUCTION FCST ERROR REDUCTION 

NASA GEOS-5 Navy NOGAPS 

Overall impacts similar in NASA and Navy systems despite 
differences in algorithms, RT models, observation counts… 

  …notable differences in Satwinds, SSMI speeds 

Daily Average Impacts of Major Observing Systems 

Global Baseline  Jan 2007 00+06 UTC 



Impacts per Observation 

Global Baseline  Jan 2007 00+06 UTC 

GEOS-5 has smaller impacts per-ob, because more observations are 
assimilated – TOTAL impacts are similar (previous slide)  

ob counts ob counts 

FCST ERROR REDUCTION  (1e-6  J/kg) FCST ERROR REDUCTION  (1e-6  J/kg) 

NASA GEOS-5 Navy NOGAPS 



FCST ERROR REDUCTION 

FCST ERROR REDUCTION 

FCST ERROR INCREASE 

FCST ERROR INCREASE 

NASA GEOS-5 Navy NOGAPS 

N18 AMSUA Ch 7 N18 AMSUA Ch 7 

Raob T 300-700 hPa Raob T 300-700 hPa 

Scatter of Observation Impact vs Innovation 
Baseline Intercomparison   21 Jan 2007 00UTC 

Most total forecast error reduction comes 
from observations with moderate-size 
innovations  …not from outliers with very 
large positive or negative innovations    



NASA 
GEOS-5 

Navy 
NOGAPS 

Observations that 
produce large 
forecast error 

reductions 

Observations that 
produce forecast 
error increases in 

both models 

Land or ice surface 
contamination of 

radiance data?  

Observation Impacts for NOAA-18 AMSU-A Ch. 7 

Baseline Intercomparison  
Jan 2007 00+06 UTC 
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Errico (2007) placed the LB04 measure in the context of various-
order Taylor series approximations of      in terms of      : 

1st order: 

Orders of Approximation of 

2nd order: 

3rd order: (LB04) 
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First- vs. Higher-Order Approximations of 

€ 

δe1 = 2δe€ 

δe
€ 

δxa

€ 

xa
€ 

xb€ 

e(x)

€ 

e(xb ) +
∂e
∂x
 
  

 
  
δx

Trémolet (2007) 
Gelaro et al. (2007) 

• Higher-than-first-order 
approximation of impact 
required due to quadratic 
nature of  

• If      is near the minimum of   , 
then the first order approximation 
will be twice the correct value.* 
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                 is a tempting approximation, 
but dangerous if the forecast is poor 
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The ‘Price’ of Higher-Order Accuracy 
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δe3 −δe1 ≈ (δy)
TKTMTCMK(δy)

Gelaro et al. (2007) found this effect to be small for partial sums 
measuring average impacts of the major observing systems…      

   
     …smaller subsets? 

Errico (2007) pointed out that the nonlinear dependence of these    
terms on      means partial sums of       involve cross terms with 
other observations and therefore possible ambiguities 
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Terms beyond first-order in the approximation        have the form: 
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1st order 
3rd order 

amsua 
raob 
aircraft 
satwnd 
qkswnd 
surface 
wspeed 
msu 
hirs 
amsub 
goes 

Accumulated 
values of 

forecast error 
reduction  

(J/kg) 

Ranked 
fractional 

contributions to 
forecast error 

reduction 

Order of approx-
imation affects the 
magnitudes of the 
impact estimates 
(~2x)... 

..but not the relative 
contribution of each 
obs system to the 
overall error reduc-
tion 

Gelaro et al. (2007) 

Totals for July 2005 00UTC 
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• In general, the analysis cost function 
is nonlinear and difficult to minimize 

Nonlinear Analysis Problems 

• One complex problem is replaced by 
a series of slightly easier ones   

    …incremental formulation 

•  An approximate quadratic 
cost function is defined and 
minimized repeatedly (outer 
loop) until a satisfactory sol-
ution is found;  the iterations 
of the minimization algorithm 
within each outer loop define 
the inner loop 

Incremental 4D-Var 
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L j =KmHm ...K j+1H j+1
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Lm = Iand where 
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xa − xb =KδyIncrement is not: 
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x j − xb =K jδy j +K jH j (x j−1 − xb )It is, after loop j : 
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xa − xb = L jj=1
m∑ K j δy jor 

Then observation 
impact is: 
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TL j
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m∑
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gwhere    is a gradient or weight in model space 

For example, with 
m=2 outer loops: 

€ 

I ≈ K1
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Tg, δy1 + K2

Tg, δy2

Observation Impact in Incremental Variational Data Assim.  

Trémolet (2008) examined observation impact in a variational data 
assimilation system, accounting for                  outer loops 
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Observation Impact with Outer Loops 
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Impact per observation type on the analysis increment with 1, 2, 
and 3 outer loop iterations  

•  Outer loop (nonlinear) effects are larger in 4D-Var  
•  Overall observation impact is smaller in 4D-Var   

Trémolet (2008) 



Observing System Experiments (OSEs) 

•  Subsets of observations are removed from the assimilation 
system and forecasts are compared against a control system 
that includes all observations 

•  Because of expense, usually involve a relatively small number 
of independent experiments, each considering a relatively large 
subset of observations 

e 

Gelaro and Zhu (2009) 



Comparison and Interpretation of ADJ and OSE Results 
…a few things to keep in mind… 

ADJ: measures the impacts of observations in the context 
of all other observations present in the assimilation system 

OSE: removal of observations changes or degrades the 
system…    differs for each member 
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K

ADJ: measures the impact of observations in each analysis 
cycle separately and against the control background 

OSE: measures the impact of removing information from 
both the background and analysis in a cumulative manner 

ADJ: measures the response of a single forecast metric to 
all perturbations of the observing system 

OSE: measures the effect of a single perturbation on all 
forecast metrics  

   " " 

 " " 



Quantitative Comparison of ADJ and OSE Results 

• Even then, comparisons between the ADJ and OSE 
results are complicated by the fact that values/changes 
in     measured in the OSE context are not directly 
comparable to values of     measured in the ADJ context  
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• Strictly speaking, quantitative comparison is limited to 
the forecast range and metric for which the ADJ results 
are valid on the one hand (e.g. 24h SH   -norm) and to the 
selected observing systems removed in the OSEs on the 
other hand 
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Quantitative Comparison of ADJ and OSE Results 

Gelaro and Zhu (2009) defined a fractional impact      of observing 
system    for each approach: 
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Fj (ADJ) =  δe j /δe
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Fj (OSE) =  (eno j − ectl )/ectl

• Measures the % decrease in error due to the presence 
of obs system    with respect to the background forecast 
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j
•    
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Fj (ADJ)j∑ =  1

• Measures the % increase in error due to the removal 
of obs system    with respect to the control forecast 
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•    
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Fj (OSE)j∑ ≠  1

OSE: 

ADJ: 



% Contributions to 24hr Forecast Error Reduction 
January 2006 

Gelaro and Zhu (2009) 



% Contributions to 24hr Forecast Error Reduction 
July 2005 

Gelaro and Zhu (2009) 



OSE Time Series of SH 24-hr Forecast Error Norm 

Skill collapses 
when all AMSUA 
removed during 
SH winter…OSE 
and ADJ results 
become difficult to 
compare 

January 2006 

July 2005 



Normalized % Contributions to 24hr Forecast Error Reduction 

January 2006 July 2005 

…ADJ and OSE responses differ in magnitude in the 
tropics, but assign similar relative ‘value’ to the various 
observing systems  



• Both OSEs and ADJ measure the net effect of observations 
on the forecast 

• We are also interested in dependencies and redundancies 
between observing systems as observations are added or 
removed  …inform current data selection, future data needs 

• Such information is implicitly available in an OSE in terms 
of the responses of the remaining observing systems when a 
given set of observations is removed 

• These responses can be measured through the combined 
use of OSEs and ADJs, by applying the ADJ to the perturbed 
(vs. only the control) members of an OSE 

Combined Use of ADJ and OSEs 



Removal of AMSUA results in large increase in AIRS (and other) impacts 

Removal of AIRS results in significant increase in AMSUA impact 

Removal of raobs results in significant increase in AMSUA, aircraft and 
other impacts (but not AIRS) 

Combined Use of ADJ and OSEs 

ADJ applied to perturbed OSE members to examine how 
changing the mix of observations influences their impacts 

Gelaro and 
Zhu (2009) 



Removal of AMSUA results in large increase in AIRS impact in tropics 

Removal of wind observations results in significant decrease in AIRS 
impact in tropics (in fact, AIRS degrades forecast without satwinds!) 

Combined Use of ADJ and OSEs 

ADJ applied to perturbed OSE members to examine how 
changing the mix of observations influences their impacts 

Gelaro and 
Zhu (2009) 



•  Despite fundamental differences in how impact is measured, 
ADJ and OSE methods provide comparable estimates of the 
overall ‘value’ of most observing systems 

Conclusions on the Complementarity of ADJ and OSE  

• The combined use of ADJs and OSEs illuminates the complex, 
complementary nature of how observations are used by the 
assimilation system 

   different treatment of background information 
   removal of whole observing systems that contribute 
disproportionately to analysis quality (AMSU-A) 

•   Information gleaned from OSEs and ADJs should be viewed 
as complementary; ADJ extends, not replaces, OSEs: 

•   Differences in OSE and ADJ results should be expected and 
do not point to shortcomings in either: 

   applicable forecast range, metrics differ 
   ADJ well suited for routine monitoring 
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